Tag: cells

Bioethics News

The Creator of the Pig-Human Chimera Keeps Proving Other Scientists Wrong

Juan Carlos Izpisua Belmonte had spent years probing the inner workings of embryos, ferreting out the genes that give a body its shape or allow wings to form instead of legs. He’d tracked wafting chemical messengers that, like traffic police, guide streams of dividing cells either left or right. He’d even found a way to tweak animals to grow extra limbs

The views, opinions and positions expressed by these authors and blogs are theirs and do not necessarily represent that of the Bioethics Research Library and Kennedy Institute of Ethics or Georgetown University.

Bioethics Blogs

Charlie Gard Post-Mortem: Could He Have Been Saved?

Charlie Gard would have turned one year old tomorrow.

Two days before the British infant died of a mitochondrial disease on July 28, a short article in MIT Technology Review teased that Shoukhrat Mtalipov and his team at Oregon Health & Science University and colleagues had used CRISPR-Cas9 to replace a mutation in human embryos, a titillating heads-up that didn’t actually name the gene or disease.

Yesterday Nature published the details of what the researchers call gene correction, not editing, because it uses natural DNA repair. I covered the news conference, with a bit of perspective, for Genetic Literacy Project.

Might gene editing enable Charlie’s parents, who might themselves develop mild symptoms as they age, to have another child free of the family’s disease? Could anything have saved the baby?

A TRAGIC CASE

The court hearing testimony on the case between Great Ormond Street Hospital (GOSH) and the family, published April 11, chronicles the sad story. The hospital had requested discontinuing life support based on the lack of tested treatment.

Charlie was born August 4, 2016, at full term and of a good weight, but by a few weeks of age, his parents noticed that he could no longer lift his head nor support any part of his body. By the October 2 pediatrician visit, Charlie hadn’t gained any weight, despite frequent breastfeeding. After an MRI and EEG, Charlie had a nasogastric tube inserted to introduce high-caloric nutrition.

By October 11, the baby was lethargic, his breathing shallow. So his parents, Connie Yates and Chris Gard, took him to GOSH.

The views, opinions and positions expressed by these authors and blogs are theirs and do not necessarily represent that of the Bioethics Research Library and Kennedy Institute of Ethics or Georgetown University.

Bioethics Blogs

Charlie Gard Post-Mortem: Could He Have Been Saved?

Charlie Gard would have turned one year old tomorrow.

Two days before the British infant died of a mitochondrial disease on July 28, a short article in MIT Technology Review teased that Shoukhrat Mtalipov and his team at Oregon Health & Science University and colleagues had used CRISPR-Cas9 to replace a mutation in human embryos, a titillating heads-up that didn’t actually name the gene or disease.

Yesterday Nature published the details of what the researchers call gene correction, not editing, because it uses natural DNA repair. I covered the news conference, with a bit of perspective, for Genetic Literacy Project.

Might gene editing enable Charlie’s parents, who might themselves develop mild symptoms as they age, to have another child free of the family’s disease? Could anything have saved the baby?

A TRAGIC CASE

The court hearing testimony on the case between Great Ormond Street Hospital (GOSH) and the family, published April 11, chronicles the sad story. The hospital had requested discontinuing life support based on the lack of tested treatment.

Charlie was born August 4, 2016, at full term and of a good weight, but by a few weeks of age, his parents noticed that he could no longer lift his head nor support any part of his body. By the October 2 pediatrician visit, Charlie hadn’t gained any weight, despite frequent breastfeeding. After an MRI and EEG, Charlie had a nasogastric tube inserted to introduce high-caloric nutrition.

By October 11, the baby was lethargic, his breathing shallow. So his parents, Connie Yates and Chris Gard, took him to GOSH.

The views, opinions and positions expressed by these authors and blogs are theirs and do not necessarily represent that of the Bioethics Research Library and Kennedy Institute of Ethics or Georgetown University.

Bioethics News

American CRISPR Experiments and the Future of Regulation

By Michael S. Dauber, MA, GBI Visiting Scholar

According to a report in The MIT Technology Review, researchers in a lab based in Portland, Oregon have successfully created genetically modified human embryos for the first time in U.S. history, using a technique called CRISPR. The project, directed by Shoukhrat Mitalipov, a researcher at Oregon Health and Science University, was published in Nature, and consisted of modifying the genes of human embryos to prevent a severe, genetically inherited heart condition. The embryos were destroyed several days after the experiments.

CRISPR stands for “clustered, regularly interspaced, short palindromic repeats.” It is a genetic editing technique that allows scientists to cut out pieces of DNA and replace them with other pieces. CRISPR originated as a naturally occurring cellular defense system in certain bacterial that allows a cell to defend itself from foreign genetic material injected into cells by viruses. RNA strands that match the problematic genes bind with the piece of DNA to be removed, and enzymes work to remove the defective material. When CRISPR is used to edit the human genome, scientists apply CRISPR RNA strands and the corresponding enzymes that match the genes they wish to edit in order to extract the problematic genes.

Mitalipov is not the first scientist to use CRISPR to edit the human genome. Scientists in China have been using the technique in research using human embryos dating back to 2015. One notable study consisted of attempts to make cells resistant to HIV. Another controversial study involved the injection of CRISPR-modified cells into a patient with advanced lung cancer.

The views, opinions and positions expressed by these authors and blogs are theirs and do not necessarily represent that of the Bioethics Research Library and Kennedy Institute of Ethics or Georgetown University.

Bioethics Blogs

Human genome editing: We should all have a say

Françoise Baylis stresses that decisions about the modification of the human germline should not be made without broad societal consultation.

__________________________________________

Shoukhrat Mitalipov, a reproductive biologist at Oregon Health and Science University, is nothing if not a pioneer. In 2007, his team published proof-of-principle research in primates showing it was possible to derive stem cells from cloned primate embryos. In 2013, his team was the first to create human embryonic stem cells by cloning. Now, in 2017, his team has reported safely and effectively modifying human embryos with the MYBPC3 mutation (which causes myocardial disease) using the gene editing technique CRISPR.

Mitalipov’s team is not the first to genetically modify human embryos. This was first accomplished in 2015 by a group of Chinese scientists led by Junjiu Huang. Mitalipov’s team, however, may be the first to demonstrate basic safety and efficacy using the CRISPR technique.

This has serious implications for the ethics debate on human germline modification which involves inserting, deleting or replacing the DNA of human sperm, eggs or embryos to change the genes of future children.

Those who support human embryo research will argue that Mitalipov’s research to alter human embryos is ethically acceptable because the embryos were not allowed to develop beyond 14 days (the widely accepted international limit on human embryo research) and because the modified embryos were not used to initiate a pregnancy. They will also point to the future potential benefit of correcting defective genes that cause inherited disease.

This research is ethically controversial, however, because it is a clear step on the path to making heritable modifications – genetic changes that can be passed down through subsequent generations.

The views, opinions and positions expressed by these authors and blogs are theirs and do not necessarily represent that of the Bioethics Research Library and Kennedy Institute of Ethics or Georgetown University.

Bioethics Blogs

Human genome editing: We should all have a say

Controversial gene editing should not proceed without citizen input and societal consensus. (Shutterstock)

Shoukhrat Mitalipov, a reproductive biologist at Oregon Health and Science University, is nothing if not a pioneer. In 2007, his team published proof-of-principle research in primates showing it was possible to derive stem cells from cloned primate embryos. In 2013, his team was the first to create human embryonic stem cells by cloning. Now, in 2017, his team is reported to have safely and effectively modified human embryos using the gene editing technique CRISPR.

Mitalipov’s team is not the first to genetically modify human embryos. This was first accomplished in 2015 by a group of Chinese scientists led by Junjiu Huang. Mitalipov’s team, however, may be the first to demonstrate basic safety and efficacy using the CRISPR technique.

This has serious implications for the ethics debate on human germline modification which involves inserting, deleting or replacing the DNA of human sperm, eggs or embryos to change the genes of future children.

Ethically controversial

Those who support human embryo research will argue that Mitalipov’s research to alter human embryos is ethically acceptable because the embryos were not allowed to develop beyond 14 days (the widely accepted international limit on human embryo research) and because the modified embryos were not used to initiate a pregnancy. They will also point to the future potential benefit of correcting defective genes that cause inherited disease.

This research is ethically controversial, however, because it is a clear step on the path to making heritable modifications – genetic changes that can be passed down through subsequent generations.

The views, opinions and positions expressed by these authors and blogs are theirs and do not necessarily represent that of the Bioethics Research Library and Kennedy Institute of Ethics or Georgetown University.

Bioethics News

Pulmonary organoids produced from human iPS cells in three dimensions (3D)

Lung organoids have been produced from human pluripotent stem (iPS) cells that contain various components of lung tissue, and even airways and alveolar structures (see HERE). Recapitulation of lung development from human pluripotent stem cells (hPSCs) in three dimensions (3D) would allow deeper insight into human development, as well as the development of innovative strategies for disease modelling, drug discovery and regenerative medicine. Lung organoids produced resemble those of the second trimester of pregnancy. The authors discuss the potential use of this model to study pulmonary fibrosis in vitro and to model lung diseases.

Photo ARTICLES | Journal of Applied Physiology

La entrada Pulmonary organoids produced from human iPS cells in three dimensions (3D) aparece primero en Bioethics Observatory.

The views, opinions and positions expressed by these authors and blogs are theirs and do not necessarily represent that of the Bioethics Research Library and Kennedy Institute of Ethics or Georgetown University.

Bioethics News

The First US Team to Gene-Edit Human Embryos Revealed

July 28, 2017

Be the first to like.
Share

Since Chinese researchers announced the first gene editing of a human embryo 2 years ago, many expected that similar work in the United States was inevitable. Last night, the MIT Technology Review broke the news that such experiments have happened. The research, led by embryologist Shoukhrat Mitalipov of Oregon Health and Science University in Portland, also reportedly sidestepped problems of incomplete and off-target editing that plagued previous attempts, though details could not be confirmed since the work is not yet published and Mitalipov has so far declined to comment.

If a peer-reviewed paper bears out the news story, “It’s one more step on the path to potential clinical application,” says bioethicist Jeffrey Kahn of Johns Hopkins University in Baltimore, Maryland, who served on a committee convened by the U.S. National Academy of Sciences (NAS) and the National Academy of Medicine in Washington, D.C., to address gene editing. The panel’s report earlier this year concluded that a clinical trial involving embryo editing would be ethically allowable under narrow circumstances.

The first published human embryo–editing work, in 2015, used nonviable embryos and targeted a gene mutated in the heritable blood disorder beta thalassemia. But it revealed major shortcomings in applying the increasingly popular CRISPR gene-editing technology. The few embryos that took up the change made by CRISPR were a patchwork of edited and unchanged cells, and they bore unintended edits outside the targeted gene.

… Read More

Be the first to like.
Share

Science Magazine

Tags: , , , , , , , , ,

The views, opinions and positions expressed by these authors and blogs are theirs and do not necessarily represent that of the Bioethics Research Library and Kennedy Institute of Ethics or Georgetown University.

Bioethics News

About That “First Gene-Edited Human Embryos” Story…..

July 28, 2017

Be the first to like.
Share

By Henry T. Greely

BREAKING NEWS: The sky is not falling. Brave New World and GATTACA are not right around the corner. And the newest “designer baby” breakthrough is, at most, an interesting incremental step.

The last few days have seen enormous attention paid to an unpublished human embryo paper—one, quite possibly, as yet unread by anyone commenting on it. According to the MIT Technology Review, Shoukhrat Mitalipov of the Oregon Health Sciences University will soon publish a paper about his successful use of the hot DNA technology CRISPR—clustered regularly interspaced short palindromic repeats—to modify viable human embryos.

“According to people familiar with the scientific results,” Mitalipov edited “a large number of one-cell embryos.” Mitalipov and colleagues “are said to have convincingly shown” that they could avoid two problems encountered in other CRISPR experiments in editing embryos: off target effects, where CRISPR changes the wrong bits of DNA, and mosaicism, where CRISPR changes some cells but not all. The embryos were destroyed after “a few days” and were never intended to be transferred into a woman’s uterus for possible implantation and birth. Sperm from men carrying disease mutations was used to make the embryos, though Technology Review “could not determine which disease genes had been chosen for editing.”  The story discusses legal bans on making babies using this method but ends with “Despite such barriers, the creation of a gene-edited person could be attempted at any moment, including by IVF clinics operating facilities in countries where there are no such legal restrictions.“

The views, opinions and positions expressed by these authors and blogs are theirs and do not necessarily represent that of the Bioethics Research Library and Kennedy Institute of Ethics or Georgetown University.

Bioethics Blogs

Snapshots of Life: Muscling in on Development

Credit: Gabrielle Kardon, University of Utah, Salt Lake City

Twice a week, I do an hour of weight training to maintain muscle strength and tone. Millions of Americans do the same, and there’s always a lot of attention paid to those upper arm muscles—the biceps and triceps. Less appreciated is another arm muscle that pumps right along during workouts: the brachialis. This muscle—located under the biceps—helps your elbow flex when you are doing all kinds of things, whether curling a 50-pound barbell or just grabbing a bag of groceries or your luggage out of the car.

Now, scientific studies of the triceps and brachialis are providing important clues about how the body’s 40 different types of limb muscles assume their distinct identities during development [1]. In these images from the NIH-supported lab of Gabrielle Kardon at the University of Utah, Salt Lake City, you see the developing forelimb of a healthy mouse strain (top) compared to that of a mutant mouse strain with a stiff, abnormal gait (bottom).

In each strain, you see the lateral triceps and brachialis muscles (purple), other types of muscle (red) and tendons (green). However, in the healthy mouse, the lateral triceps and brachialis muscles are distinct, which gives the forelimb its flexibility; while in the mutant mouse, the two muscles are fused and indistinct, limiting the forelimb’s function.

The mice with the abnormal lateral triceps and brachialis have a mutation in a gene called Tbx3, which codes for a transcription factor that switches other genes off and on. If you follow this blog, you know that a lot of exciting research is currently focused on transcription factors, including how precise combinations of transcription factors can turn skin cells into blood stem cells or be used to make neurons.

The views, opinions and positions expressed by these authors and blogs are theirs and do not necessarily represent that of the Bioethics Research Library and Kennedy Institute of Ethics or Georgetown University.