Bioethics Blogs

Tumor Scanner Promises Fast 3D Imaging of Biopsies

Caption: University of Washington team that developed new light-sheet microscope (center) includes (l-r) Jonathan Liu, Adam Glaser, Larry True, Nicholas Reder, and Ye Chen.
Credit: Mark Stone/University of Washington

After surgically removing a tumor from a cancer patient, doctors like to send off some of the tissue for evaluation by a pathologist to get a better idea of whether the margins are cancer free and to guide further treatment decisions. But for technical reasons, completing the pathology report can take days, much to the frustration of patients and their families. Sometimes the results even require an additional surgical procedure.

Now, NIH-funded researchers have developed a groundbreaking new microscope to help perform the pathology in minutes, not days. How’s that possible? The device works like a scanner for tissues, using a thin sheet of light to capture a series of thin cross sections within a tumor specimen without having to section it with a knife, as is done with conventional pathology. The rapidly acquired 2D “optical sections” are processed by a computer that assembles them into a high-resolution 3D image for immediate analysis.

The microscope was developed in the engineering lab of Jonathan Liu at University of Washington, Seattle. Liu got the idea after receiving an email from Nicholas Reder, a medical resident in the university’s pathology department. Reder noted that when pathologists examine a tumor specimen under a conventional analog microscope, they must first prepare the sample. That involves the laborious process of taking a thick piece of tissue, slicing it into smaller pieces for embedding in wax before cutting them again into a few paper-thin sections suitable for mounting on traditional glass slides.

The views, opinions and positions expressed by these authors and blogs are theirs and do not necessarily represent that of the Bioethics Research Library and Kennedy Institute of Ethics or Georgetown University.