Bioethics Blogs

Missing Genes Point to Possible Drug Targets

Every person’s genetic blueprint, or genome, is unique because of variations that occasionally occur in our DNA sequences. Most of those are passed on to us from our parents. But not all variations are inherited—each of us carries 60 to 100 “new mutations” that happened for the first time in us. Some of those variations can knock out the function of a gene in ways that lead to disease or other serious health problems, particularly in people unlucky enough to have two malfunctioning copies of the same gene. Recently, scientists have begun to identify rare individuals who have loss-of-function variations that actually seem to improve their health—extraordinary discoveries that may help us understand how genes work as well as yield promising new drug targets that may benefit everyone.

In a study published in the journal Nature, a team partially funded by NIH sequenced all 18,000 protein-coding genes in more than 10,500 adults living in Pakistan [1]. After finding that more than 17 percent of the participants had at least one gene completely “knocked out,” researchers could set about analyzing what consequences—good, bad, or neutral—those loss-of-function variations had on their health and well-being.

Gene knockouts are expected to occur more frequently in certain countries, such as Pakistan, where people sometimes marry and have children with their first cousins. That makes it much more likely that a person carrying a loss-of-function gene variation will have inherited that same variation from both of their parents.

In the latest study, a team led by Sekar Kathiresan at the Broad Institute of Harvard and MIT, Boston, turned to the Pakistan Rise of Myocardial Infarction Study (PROMIS) in hopes of finding more gene knockouts.

The views, opinions and positions expressed by these authors and blogs are theirs and do not necessarily represent that of the Bioethics Research Library and Kennedy Institute of Ethics or Georgetown University.