Bioethics Blogs

DNA Barcodes Could Streamline Search for New Drugs to Combat Cancer

A little more than a decade ago, researchers began adapting a familiar commercial concept to genomics: the barcode. Instead of the black, printed stripes of the Universal Product Codes (UPCs) that we see on everything from package deliveries to clothing tags, they used short, unique snippets of DNA to label cells. These biological “barcodes” enable scientists to distinguish one cell type from another, in much the same way that a supermarket scanner recognizes different brands of cereal.

DNA barcoding has already empowered single-cell analysis, including for nerve cells in the brain. Now, in a new NIH-supported study, DNA barcoding helps in the development of a new method that could greatly streamline an increasingly complex and labor-intensive process: screening for drugs to combat cancer.

The new method, reported recently in the journal Nature Biotechnology, is called PRISM, short for Profiling Relative Inhibition Simultaneously in Mixtures [1]. In their trial run of PRISM, the researchers uniquely barcoded more than 100 cancer cell lines. This allowed them to pool the cell lines and screen them all at the same time (instead of individually) against each of thousands of potential drug compounds, to see which, if any, of the barcoded cells they had the power to kill. This proof of concept suggests that PRISM, with further refinements, could help to accelerate cancer drug discovery and bring greater precision to the screening process.

This innovative research was led by the lab of Todd Golub of the Broad Institute of MIT and Harvard, Cambridge, MA. PRISM consists of two key components.

The views, opinions and positions expressed by these authors and blogs are theirs and do not necessarily represent that of the Bioethics Research Library and Kennedy Institute of Ethics or Georgetown University.