Bioethics Blogs

Prostate Cancer: Designing a Smarter High-Tech Biopsy

3D data map of prostate biopsies

Caption: When the biopsy is completed, a 3D data map is generated. In this actual example, what is shown is the contour of the prostate (red), location of the tumor (green), the location of the standard random prostate biopsies (white cores), and the location of the targeted fusion biopsies (yellow cores).
Credit: Peter A. Pinto, National Cancer Institute, NIH

Many of you probably know that prostate cancer is the most frequently diagnosed cancer in American men. But here’s something that might surprise you: the way in which doctors biopsy for prostate cancer hasn’t changed significantly in nearly 30 years—even though about a million such biopsies are conducted every year in the United States.

Unlike breast cancer biopsies, which sample tissue from a suspicious area seen on a mammogram, prostate cancer biopsies still are generally performed as random, 12-point searches to see if any cancerous cells might be lurking somewhere in the prostate gland. While random biopsies have helped to save many lives, NIH-supported research has developed a targeted approach that brings much-needed efficiency to the diagnostic process—and appears to be better at detecting aggressive, high-risk prostate cancer than current methods.

The approach, called “targeted fusion biopsy,” was envisioned nearly 10 years ago by a team of intramural researchers at the NIH Clinical Center in Bethesda, MD. Under a cooperative research and development agreement with the Florida-based Philips Healthcare, a prototype imaging system called UroNav was created, tested, and recently approved by the Food and Drug Administration. And, now, researchers report that fusion biopsy has produced impressive results in a seven-year clinical trial involving more than 1,000 men [1].

The views, opinions and positions expressed by these authors and blogs are theirs and do not necessarily represent that of the Bioethics Research Library and Kennedy Institute of Ethics or Georgetown University.