Bioethics Blogs

Creative Minds: Tackling Chemotherapy Resistance

Aaron Meyer

Aaron Meyer

For many young scientists, nothing can equal the chance to have a lab of one’s own. Still, it often takes considerable time to get there. To help creative minds cut to the chase sooner, the NIH Director’s Early Independence Awards this year will enable 17 outstanding young researchers to skip post-doctoral training and begin running their own labs immediately.

Today, I’d like to tell you about one of these creative minds. His name is Aaron Meyer, a cell signaling expert at the Massachusetts Institute of Technology in Cambridge, and his research project will take aim at one the biggest challenges in cancer treatment: chemotherapy resistance.

Specifically, Meyer’s work focuses on a group of proteins, called receptor tyrosine kinases (RTKs), which are embedded in the outer surface of just about every cell in our body. RTKs bind various hormones and growth factors that activate internal signaling networks critical for cell communication, growth, and movement. RTKs are so fundamental to the core functions of our cells that many cancers hijack them to fuel their growth and resist certain chemotherapy drugs.

For example, breast cancers that produce too much of an RTK, called human epidermal growth factor receptor 2 (HER2), tend to grow faster and respond poorly to standard chemotherapy. Blocking the receptor with drugs (most famously Herceptin®) helps to stop the growth of the HER2-positive breast cancers. But it doesn’t always work, and that has puzzled and frustrated patients and oncologists for many years. Recent studies suggest that when a drug blocks a particular RTK from signaling, other nearby clusters of RTKs may step in and take their place.

The views, opinions and positions expressed by these authors and blogs are theirs and do not necessarily represent that of the Bioethics Research Library and Kennedy Institute of Ethics or Georgetown University.